www.obpcdl.org

GVmind: Exploring the Boundary between
Executable Specification Languages &
Behavior Analysis Tools

Habilitation a diriger des recherches

Ciprian TEODOROV
https://www.ensta-bretagnhe.fr/teodorov

ciprian.teodorov@ensta-bretagne.fr
P4S, Lab-STICC, UMR CNRS 6285

3 april 2023

https://www.ensta-bretagne.fr/teodorov
http://www.obpcdl.org/

Overview

1. Executable specifications & behavior analysis monitors

2. Transformations: The shy semantics and the inaccessible monitors.
3. When the semantics decides to open up the monitors are interested.
4. When GVmin3 experiences the real world.

5. Sum up and ways forward.

ENSTA

Context: Domain-specific languages

Domain experts rely on
to alleviate these problems.

enable

abstractions (models) focused on the domain of tools (conceptual or computer-assisted)
discourse. adapted to the domain

3/50

Context: Executable specifications

» eXecutable Domain-Specific Languages (xDSL) for handling behaviors.

* Programming languages = prescriptive xDSLs
force the computer to perform some behavior.

* Thinking above the code[1], specifying, requires a problem-oriented mindset

* Executable-Specifications capture the behavior to study it in captivity
* Descriptive xDSL that reflect how the object behaves

Descriptive [2]:
* presenting observations about the characteristics of something
e factually grounded or informative rather than normative, prescriptive or emotive

“».’ p .‘l;“-.\ci;/‘,. e
‘!" .] . . s 7 %
§g @STICC [1] Leslie Lamport: Thinking Above the Code) 450

[2] (https://www.merriam-webster.com/dictionary/descriptive

https://www.youtube.com/watch?v=-4Yp3j_jk8Q
https://www.merriam-webster.com/dictionary/descriptive

a Zoo of Executable Specification Languages

dy Physical processes 3\ Temporal logic
e Calculus [Newton and Leibniz] \'\\/ o LTL
o CTL*

| e Temporal Logic of Actions (TLA+)

B Computable functions a Automata
% e Lambda calculus / \ e NFA

‘}‘ . .
‘ e Turing machines \\-/ e PDA

| | e Statecharts

|
. » Concurrency a:;;’;,m HDLs
Mh—0 e Ppetrinets e 7 e VHDL[-AMS]
e CSP —Hoare o [System-]Verilog[-A]

| e Actor models — Hewitt |

5/50

Terminology

Language monitoring [KHC91 | is the process of observing

the execution of a computer program
expressed in a given programming language.

[KHC91] Amir Kishon, Paul Hudak, and Charles Consel. 1991. Monitoring semantics: a formal framework for specifying, implementing, and
reasoning about execution monitors. In Proceedings of the ACM SIGPLAN 1991 conference on Programming language design and
implementation (PLDI '91). Association for Computing Machinery, New York, NY, USA, 338-352. https://doi.org/10.1145/113445.113474

6/50

http://dx.doi.org/10.1145/113445.113474

Terminology: In our context

Language monitoring is the process of observing

the behavior of an executable specification
expressed in a given specification language.

In the following:
the tools that enable this process will be referred to as:
language monitors, or simply monitors

runtime monitors are a subclass of language monitors

@sncc 7/50

a Zoo of Language Monitors

Debugger
e Moldable [1]

Executor Monitor o
e Omniscient [2]

e Multiverse [3]

Profiler Model-checker
e MetaSpy [4] e L.TSmin [6]

e DSProfile [5]

[1] Chis et al. "The Moldable Debugger: A Framework for Developing Domain-Specific Debuggers.” SLE 2014.

[2] Bousse et al. “Omniscient Debugging for Executable DSLs.” JSS 2018.

[3] Torres Lopez et al. "Multiverse debugging: Non-deterministic debugging for non-deterministic programs." ECOOP 2019.
[4] Bergel et al. "Domain-specific profiling." TOOLS 2011.

[5] Sloane et al. "Domain-specific program profiling and its application to attribute grammars and term rewriting." SCP 2014.
[6] Kant et al. "LTSmin: High-Performance Language-Independent Model Checking.” TACAS 2015.

STICC 8/50

ENSTA

Bretagne

PlatformS

How to bridge the gap between
the specification languages
vonitors - aNd the language monitors
running on ever more heterogeneous platforms?

Language$S

2. Transformations:
the Shy Semantics
and the Inaccessible Monitors.

* Understanding the problem
* Looking for high-level solutions

=
S% @sncc
ENSTA

Many Semantics — Many Runtime Monitors

Model 1 1
|

Monitor * Semantic gaps
Runtime 1

Formal
Semantics

e Equivalence problems

............. » Model 2 1

Executable)‘-“g ---------- Monitor
Specification | ™ ‘ Runtime 2
J) Model 3 }

.................. N

Monitor)
Result 3 Qg """ ‘...»

Execution
Runtime

>

Model 4 1
|

Monitor

Runtime 3

Runtime 4

11/50

Bretagne

A#l

g=mbeddr, IF [Dragomir+22]

Analysis Platform

Semanticl
Gap

LM Model

transforniation

code
generation

Code

Equivalence
Problem

LA Model —

High-level
monitors

Semantic Gap

Low level

AH2 .

Execution Platform

Sp

emantic
Gap

transforniation

in [Hol97]

LM Model

gen

P LA Model ——

monitors

. ...dlysis Platform

High-level
monitors

Equivalence
Problem

Code

Execution Platform

Low level
monitors

Code

A#7 Execution Platform

LM Model

interprets

Deployment
Interpreter

— SLI

Semantic gap between design model and analysis

model
Semantic gap between design model and

executable code

Equivalence problem between the analysis model

and executable code

Divine [Bar+17]

Semantic Gap

Low level
monitors

A#3 LM Model
code
generation
deploy deploy
Low level
monitors Cade Code
<€ >

Execution Platform

N4 STICC

ENSTA

Equivalence Problem

Analysis Platform

Analysis Platform

High level
monitors

High level |

monitors

SPOT [DP04], LTSmin [Kan+15]
A#H4

AnimUML [Jouault+20]
EMI [Besnard+21]

A#5

LM Model,

LM Model %e

?nte rprets

Deployment <

ploy

High-level
monitors

Analysis Platform

High-level

LM Model .
monitors

code | T)
generation Semantic Gap

Equivalence
Problem

Low level
monitors

Code

Execution Platform

dTeLIeR

Analysis Platform

horizontal
................... LM Model.
refinement) !

:vertical refinement

LM Model,

code | T
generation Semantic Gap

Equivalence
Problem

Low level
monitors

Code

Execution Platform

A#6 cxec Java PathFinder [Bra+00] Analysis Platform

LM Model

depl
= % LM Model

Tnte rprets

> Analysis | High level

Interpreter

Equivalence Problem

Interpreter monitors

V. BESNARD, “EMI: Une approche pour unifier I'analyse et I’exécution embarquée a I’aide d’un interpréteur de modéles pilotable”,
Application aux modeles UML des systéemes embarqués, Ph.D. Thesis, Dec. 2020.

Analysis Platform

A#1 ALl (Rl AH7 execution Platform Analysis Platform A#4

transformation High-level
igh- LM Model —— :
LM Model P LA Model —— :'g:itloer\;el monitors
LM Model code |
code ; generation
generation
interprets l
Low level : d Low level
Code ow evel Deployment | | SL| ngh.level Code [—— 0.0
Inte rpreter monitors Execution Platform

Execution Platform

Analysis Platform

A#Z Analysis Platform A#S _
A R o o
|

transformation : : : :
High-level :vertical refinement
‘ High-level

LM Modelk

LM Model P> LA Model monitors P#l X X
monitors

code |
J code
generation

v
gl P2 X X X X
X X v !

Code |— Low level P#3 X X

monitors
Low level
Code [—— .
monitors

X X &
x A A

Execution Platform
Execution Platform

A#3 S A#6 Execution Platform Analysis Platform

code
generation deplo depl
LM Model <ep—y LM Model —<¥ LM Model
deploy deploy - -
Low level Code | il S code Low level interprets interprets
monitors monitors
High level | Deployment Analysis | High level
Execution Platform Analysis Platform monitors Interpreter Interpreter monitors
E$VS\'TA gSTICC V. BESNARD, “EMI: Une approche pour unifier I'analyse et I’exécution embarquée a I’aide d’un interpréteur de modéles pilotable”, 13/50
BieRge Application aux modeles UML des systéemes embarqués, Ph.D. Thesis, Dec. 2020.

One Semantics — Many Language Monitors

Formal
Semantics Execution Platform Analysis Platform
LM Model
ﬁnterprets
ESL Model
) Deployment | | SL| High level
Monitor Interpreter monitors
Runtime 1
Execu_table »| s 3 Mor_ntor
Runtime Runtime 2
Monitor
Runtime N SLI
Monitor

Runtime 3

ENSTA

Make it Simple & Modular

Executable Properties
Specification (metrics)
interprets Icompute
Semantics SL| Language Diagnosis Toolbox:
Monitors - Debugger
Semantic e Simulator
* Profiler
Language * Model-checker
Interface * Exec. Monitors

STICC

‘L.’
&

ENSTA

Make it Simple & Modular

Q1: What is the SLI interface?
Q2: Where is the toolbox?

Executable Properties
Specification (metrics)
interprets Icompute
Missing toolbox ?
Semantics SL| Language Diagnosis Toolbox:
Monitors - Debugger
Semantic e Simulator
* Profiler
Language * Model-checker
Interface * Exec. Monitors

STICC

3. When
the Semantics Decides to Open up
the Monitors are Interested.

* Requirements
* GVmin3 Semantic Language Interface
* Anillustration

Ingredients:

Subject Language

Syntax
Defir‘;ition Execution & Monitoring
conformsTo
interprets providesA Semantic dependsOn
Model [Semantics » Language |«

Interface (SLI)

runs

Execution
Controler

/\

Emptiness

Checker Interactive

Sequencer

Requirements:

Subject Language

Syntax
Deflmltlon Execution & Monitoring
conformsTo
interprets) providesA Semantic dependsOn
Model [Semantics » Language |«
Interface (SLI)
i
Completeness Minimize the Gap
Non-Interference Break the Rules SR
Controler
Genericity Portability A
Composability Ease Semantics Integration
Unanticipated Monitoring Ease Monitor Integration
Emptiness :
P Sequencer Checker Interactive
s STICC

ENSTA

GVYmin3 Semantic Language Interface (SLI)

SLI (CAEVRa) Generic Types:
semantics: (C A) Configuration,
initial: set C Action,
actions: C - set A Expression,
execute: A - C -» set C Value,

Reduction Exp.

a: Reduced Config.

execution step

A
[\

evaluate: E - (C - A - C) » V — questions
reduce: R - C » « —— reductions
m: (CAV aT) —— projections

20/50

Syntax:
E - X
SLI for Lambda Calculus e
CEK-style Semantics [ABM’ 14]:
lookup X K)— x].1 x].2 K
app €1 €2 K — €1 O €2 ' K
arg Vv O e K — e vV O ' K
body Y Ax.e O 1K) — e [xp (Vv] K
SLI Semantics Definition
rules: { lookup, app, arg, body }
semantics: Domains:
initial: set C := {(exp [Value = AX.e€ Closure v,
-
actions: C - set A JUELL S = L
| ¢ => rules.where(r => r.enabledIn c) E E Frame C
— A

execute: A - C - set C
| r ¢ = { r.applyIn c }

P [ABM’ 14] B. Accattoli, P. Barenbaum, and D. Mazza.
E%?,'.A @S_”CC Distilling Abstract Machines. ICFP '14

Lambda]
, Sequencer
Expression

Thﬂapmm execute

A CEK
Semantics

SLI

Sequencer(sli) {

}

current = sli.initial.any

while (current '= @) {
action = sli.actions(current).any
current= sli.execute(action,current).any

where:

<1!=lSTKXZ

sliisdeterministic<=>Vac, |Initial|=|actionsc|=|execute ac|=1

22/50

4. \When GVYmIn3 experiences
the real world.

 Some experiences unravel reusable monitoring bridges
* Transfer to commercial products -- OBP2 inside

* Exploring hardware execution

 Multiverse debugging made simple and more powerful
* From zero to model-checker in 30 Hours

-
‘ @sncc 23150

OBP2 Research Vehicle

Safety & Liveness

2015-2023 Temporal Requirements L ROGER B DROUOT
Emilien Nicolas Matthias : ~ LLEROUX F. GOLRA
FOURNIER SUN pASQUIER ONEWAY (56AC)
2022 2022 :
proETes Ker-SEVECO (R.Bretagne, ERDF)
&L T JoinSafeCyber (AID)
‘ VeriMoB (RAPID)
») Semantic EASE4SE (RAPID)
uka incent Valentin DEPARTS (PIA)
LE ROUX LEILDE BESNARD Language GeMoC (ANR)
2018 2013 2020 Interface
:- A Academic Prototypes [in-house] : Reuse [OTS] |
l I
I . UNIFIED)
: AnimUML woseuke L EMI-UML AEFD :
I
| = ANC . |
! CSC EYe
I LUC O = (DAVIDSON Hlacre |
L

NNNNNNNN

24/50

http://www.obpcdl.org/bare-metal-uml/
https://animuml.kher.nl/AnimUML.html

AEFD
Specification

I interprets

AEFD PhD Luka

Semantics St LE ROUX

verify

x S| P rope rty interprets Safety .
Semantics Specification

AEFD
Emptiness Ay PIA DEPARTS @

Checker Model-checker 25/50

Fiacre Partially Bounded
Context-Aware Verification,

Specification

Iinterprets SEFM’19
Fiacre S| PhD Luka
Semantics LE ROUX
verify

oL Semantics Guide

Guide interprets | \/erification }

SLI —

Semantics Specification

CDL interprets CDL Prop }

B
S

PIA DEPARTS

Model-checker 26/50

PastFree[ze] Emptiness
Checker Checker

Executable
e s Sequencer
Specification
Tinterprets execute

Semantics SLI

verify

SLI

X

Emptiness
Checker

Semantics Specification

Property interprets | Temporal }

s
S

Model-checker 27/50

Bare-metal STM32 - ARM A9

UML
Specification

Sequencer

|

I interprets

UML Model (XMI)

UML to C Serializer

view of

EMI PhD Valentin
Semantics BESNARD
Unified LTL Verification and
b UML Model (©) Embedded Execution of
N Data Types for UML MOdeIS, MODELS’18
Action Language //
Interpreter //
Source Code . //
Source Code |i //
// S| GPSL interprets GPSL
Semantics Specification
;
/ DAVIDSON
> Runtime Model ,’/ °°°°°°°°°
Executable | | Emptiness Aty GSGO
Interpreter i / Checker RANDE ECOLE D'INGENEURS
Executable Code i//l Model-checker 28/50

S |

Bare-metal STM32 - ARM A9

UML Scheduling
Specification Policy

T interprets

EMI
Semantics

SLI

Modular Scheduling for Both
Verification & Embedded Execution.

to appear.

Unified verification and monitoring of
executable UML specifications.

A transformation-free approach.
SoSyM’21.

ENSTA
Bretagne

STICC

Sequencer

PhD Valentin
BESNARD

interprets
% s (| PUSMEMI P PUSM
Semantics Specification

X
DAVIDSON

cccccccccc

CSCO

Emptiness , : /
Ch ecke r GRANDE ECOLE D'INGENEEURS
Model-checker 29/50

Bare-metal STM32 - ARM A9

UML Scheduling S
, equencer
Policy

Specification

T interprets

EMI PhD Valentin
) SLI
Semantics BESNARD
EMI
Semantics oL
l interprets S L|
UML
Environment
Modular Scheduling for Both
Verification & Embedded Execution.
to appear. interprets
e -~] o] pus
Unified verification and monitoring of y¢
executable UML specifications. S AVIDSON
A transformation-free approach. T & 0000 e
ioSyM21. Emptiness Ay GSGO
ﬂi": GRANDE ECOLE D'INGENIEURS
N STICC Checker Model-checker 30/50

ENSTA
Bretagne

Bare-metal STM32 - ARM A9

UML Scheduling
Specification Policy

T interprets

EMI
Semantics

SLI

EMI

Sequencer

SLI

Semantics

l interprets

UML
Environment
Modular Scheduling for Both
Verification & Embedded Execution.

to appear.

Unified verification and monitoring of
executable UML specifications.

A transformation-free approach.
SoSyM’21.

ENSTA
Bretagne

STICC

PhD Valentin
BESNARD

Filter

Emptiness
Checker

interprets Fi|te ring
Policy

SLI

PUSMEMI _imterprets | PUSM
Semantics Specification

y¢

DAVIDSON

cccccccccc

Ay CSCO

GRANDE ECOLE D'INGENEURS

Model-checker 31/50

Bare-metal STM32 - ARM A9

UML Scheduling
, Sequencer Sequencer
Policy

Specification

T interprets

EMI SL| Acceptance PhD Valentin
Semantics Asserter BESNARD
EMI | S| SLI
Semantics . N
PUSM EMI lnterprets= PUSM Monitor
l interprets Semantics Specification
UML : e A
Environment Filter neererets | Filtering
Policy

Unified verification and monitoring of
executable UML specifications.
A transformation-free approach.

S|_| PUSM EMI interprets PUSM }

SoSyM’21. Semantics Specification
¢
Verifying and Monitoring UML Models DAVIDSON
with Observer Automata. MODELS’19. @ °°°°°°°°°
. Emptiness GSGO
‘if GRANDE ECOLE D'INGENEURS
§-J STICC Checker Model-checker 32/50

ENSTA

Bretagne

4. \When GVYmIn3 experiences
the real world.

 Some experiences unravel reusable monitoring bridges
* Transfer to commercial products -- OBP2 inside

* Exploring hardware execution

 Multiverse debugging made simple and more powerful
* From zero to model-checker in 30 Hours

-
‘ @sncc 3350

[T T T T T T T T T T T T T T T T T T == -

{€} PragmaDev Process - BPMN Models - [u] X
Model Edit Search View Execution Windows Help

f E‘ o E ‘ LA 4 ‘ ﬁ P ME BE AE ka w . O . w0 ﬂ
| & Pizza | DeliverPizza |
o n

Delivery Boy

< >

Execution started...

Press release PRAGMADEV

modeling and testing tools

PragmaDev Process, a new tool to
verify business processes.

Paris - France - November 13", 2019 - PragmaDev launches PragmaDev Process a new product that
aims at verifying business process models described with BPMN (Business Process Model Notation). The
new product includes an editor, an executor, and an explorer. It is the outcome of a 2 years research project
financed by the French Army with use cases from Eurocontrol and Airbus Defence & Space. The editor is
free of charge without any restrictions and the executor offers free execution of small models.

20
NS STICC

ENSTA

Bretagne

SLI

Property Sequence Chart

PRAGMADEV

PRCESS

{8} PragmaDev Process - MSC Diagrams — o
Diagram Edit Search View Export Windows Execute Help
E‘ é A ‘ E% X ‘;’ /9 ‘ “ . o ﬁ
‘"Z' pizza_ok ‘
v @ @
&
= e [| [ow][] o
X | .
Order 5
pizza
i2zg order
~l
|
ool
60 mis gsZ—;
Y
25 for .,
pizz —]
Guery
-
Executionfffinished! s

‘Customer‘ 'Clerk‘ [‘)elivery Boy‘

_eipizza order |

X

SLI

Emptiness
Checker

GPSL
Semantics

Model-checker

interprets

v

GPSL
Specification

M. Brumbulli et al., ERTS 2020
M. Brumbulli et al., CSD&M 2020

RAPID VeriMoB (&) PRAGMADEV

34/50

modeling and testing tools

A new generation of model checker with
PragmaDev Studio V6.0.

Paris - France - June 14", 2022 - PragmaDev Studio \/6.0 introduces a new generation of model checker
and the support of the new SDL broadcast, making it the best modeling tool to specify and design safe com-
municating software.

Following a long collaboration with ENSTA Bretagne research lab, PragmaDev has integrated in its latest
release of PragmaDev Studio, ENSTA Bretagne model checker OBP (Observer Based Prover).

The primary objective of model checking is to explore all possible scenarios in the model. During the explo-
ration it is possible to detect dead locks, unreachable model branches, or to verify properties. This is a major
feature that leads to a safer and more secure design.

The key characteristic of OBP is that it does not rely on a dedicated language. It relies on a third party exec-
utor to execute the model. In PragmaDev Studio V6 OBP is interacting with PragmaDev SDL executor to
execute the transitions. OBP does not actually know anything about the model it is exploring. It is the same
principle with the properties. OBP evaluates complex properties made of atomic properties that are evalu-
ated by the execution engine.

Communicating systems inherently create a lot of possible cases due to the fact that their designs are
based on concurrent state machines. This creates a lot of possible paths of execution. PragmaDev Stud
has built-in ways to reduce the state size during exploration:

4. \When GVYmIn3 experiences
the real world.

 Some experiences unravel reusable monitoring bridges
* Transfer to commercial products -- OBP2 inside

* Exploring hardware execution
 Multiverse debugging made simple and more powerful
* From zero to model-checker in 30 Hours

-
\ @STlCC 36/50

From Embedded

, umL)
to Hardware Execution | specification 2
EMI Menhir .
PhD Valentin | UML) GPSL } Semantics | St VCore EgB:g:lEh:n
BESNARD Specification Properties ARM A9 B R A tix.7 FPGA

EMI

Semantics Sl

Zynq XC72020-CLG484
STM32F4 Discovery DVE C | Menhir ’
Semantics >L VCore DSD°20

/
ARM A9 L =2 Artix-7.FPGA FPL'21
DVE DVE ’
Specification} Properties } Zynqg XC72020-CLGA84 DATE 22
DVE2VHDL*
_Vgeet” |
VHDL SL| b Dolmen VHDL oL Menhir
Model VCore Model VCore

Virtex UltraScale+ XCVU37P FPGA

Artix-7.FPGA o
Region Bretagne

Zyng XC72020-CLG484 CPER CybersSS|

37/50

DATE 22

Dolmen: 15t Hardware Swarm Engine
&y for Both Safety & Liveness Verification

PhD Emilien
FOURNIER

Z" = Swarm of 32 deeply pipelined verification cores Virtex FPGA
* Distributed control architecture, for large SSI-FPGAs

* 48 /4% average speedup over software (Divine 3)

1E45 W Dolmen([19,12] m Dolmen[19,19] 23091 X

8172 X Emptine

Che k Model-checker
359 X
. I distribute - serialize

Esa 7545 X 5828 X

2552 X

874 X

+

271 X
+
+

1E+0

1E-1
Q/*

1;2%{- Qﬁ& Q)%@ Q)%{. Q;S{g, ‘o\e’@& Q&S\ \Q‘o‘@ %*6@0 t—)x*&

‘!7 7 .

Svsng @Sﬂcc Région Bretagne
Bretagne CPER CyberSSI

4. \When GVYmIn3 experiences
the real world.

 Some experiences unravel reusable monitoring bridges
* Transfer to commercial products -- OBP2 inside

* Exploring hardware execution

* Multiverse debugging made simple and more powerful
* From zero to model-checker in 30 Hours

-
‘ @sncc 39750

Specification

AnimUML }

Tinterprets

AnimUML

Semantics

ENSTA

Bretagne

SLI

Multiverse Debugger

Semantics

step

LA™

jump

select

run2breakpoint

Replace
Initial

PhD Matthias
PASQUIER

Non-trivial Monitor Composition

Property interpref
Semantics

Temporal h
Breakpoint

Emptiness applies
Checker

Model-checker

Reduction

Interactive
Controler

Submitted to
ECMFA’23

Models’22

eSCO

GRANDE ECOLE D'INGENEURS

40/50

4. \When GVYmIn3 experiences
the real world.

 Some experiences unravel reusable monitoring bridges

* Transfer to commercial products -- OBP2 inside

* Exploring hardware execution

 Multiverse debugging made simple and more powerful

e Transfer to future practioners -- From zero to model-checker in 30 Hours

&% STICC
ENSTA 41750

From Zero To Model-Checker in 30 Hours

* Class at ENSTA Bretagne the last 2 years

5.Sum Up & Ways Forwarad

Conclusion
Major Breakthroughs

Perspectives
Track Record

43/50

embedded: Bare-metal
hardware: FPGA

D
b

PlatformS W\

GVmin3 = a way to bridge the gap between
the specification languages
vonitors - aNd the language monitors

running on ever more heterogeneous platforms?
Model-checker

Multiverse Debugger
Execution Monitor Languages industrial: BPMN, SDL

reuse: TLA+, Fiacre
academic: UML, AEFD

44/50

Major Breakthroughs

A sustainable & composable approach for language monitoring

step-based evaluation plays a major role

1st Hardware Swarm Engine for Both Safety and Liveness Verification

pipelined reformulation of the verification architecture

Established a continuum between debugging and model-checking

language-agnostic under-approximations for scalability
temporal breakpoints

45/50

. Generalizing the GYmin3 language monitoring for
Perspectives

specification-driven software engineering.

e Short term:

* Unifying scheduling and partial-order reduction
* Language-agnostic timed semantics

e Midterm:

* Towards open and dynamic abstraction-refinement

* Heterogeneous refinement mappings

e Overapproximations with maximal reuse of the base semantics
* Heterogeneous models

* Long term:

* Moldable diagnosis cockpit: language-agnostic portofolio-based diagnosis
* Derive the proof of the soundness of the monitor
* Algebraic algorithm specification

* The isolation of the execution controller in Gamine can be seen as a generalization of recursion schemes from
trees to arbitrary graphs.

* Allow non-determinism during algorithm design = design algorithm families
» Dataflow-focus to reduce over-constraining

Track Record

Phd students:

Main Projects: ONEWAY, Ker-SEVECO,
JoinSafeCyber, VeriMoB, EASE4SE, DEPARTS,

GEMOC, Ardyt, Morpheus, ValMadeo
Contracts: DAVIDSON, ERTOSGENER

@sncc

Matthias Pasquier

Emilien Fournier

Tithnara Sun

Valentin Besnard (prix GDR-GPL)
Vincent Leilde

Luka Le Roux

Lamia Allal

Jean-Philippe Schneider

Be curious, Exptore,
Expav\d our understanding,
Share the insights

—

Postdocs: Engineers: Papers:
* Luka Le Roux * Hiba Hnaini e 1 patent
* Valery Monthe * Sylvain Guerin * 9journal papers
* Bastien Drouout * Fatma Zarka * 49 conference papers
 Fahad Golra * Nadia Menad
e Jean-Charles Roger * Sebastien Tleye
* Vincent Leilde * Ismail Chaida
Software:

 OBP2 nominated Systematic
Paris-Région ’20

* ClockSystem

* Phadeo

e EMIUML

* AnimUML

e 50+ github repos

47/50

https://github.com/teodorov
http://www.obpcdl.org/

