
G∀min∃: Exploring the Boundary between
Executable Specification Languages &

Behavior Analysis Tools
Habilitation à diriger des recherches

Ciprian TEODOROV
https://www.ensta-bretagne.fr/teodorov

ciprian.teodorov@ensta-bretagne.fr
P4S, Lab-STICC, UMR CNRS 6285

3 april 2023

www.obpcdl.org

https://www.ensta-bretagne.fr/teodorov
http://www.obpcdl.org/

Overview

1. Executable specifications & behavior analysis monitors

2. Transformations: The shy semantics and the inaccessible monitors.

3. When the semantics decides to open up the monitors are interested.

4. When G∀min∃ experiences the real world.

5. Sum up and ways forward.

2/50

Context: Domain-specific languages

Domain-specific languages enable
abstractions (models) focused on the domain of

discourse.
tools (conceptual or computer-assisted)

adapted to the domain

Domain experts rely on a shared domain-specific language
to alleviate these problems.

General-purpose languages introduce accidental complexities.

3/50

Context: Executable specifications

• eXecutable Domain-Specific Languages (xDSL) for handling behaviors.
• Programming languages = prescriptive xDSLs

force the computer to perform some behavior.
• Thinking above the code[1], specifying, requires a problem-oriented mindset

• Executable-Specifications capture the behavior to study it in captivity
• Descriptive xDSL that reflect how the object behaves

[1] Leslie Lamport: Thinking Above the Code
[2] (https://www.merriam-webster.com/dictionary/descriptive)

Descriptive [2]:
• presenting observations about the characteristics of something
• factually grounded or informative rather than normative, prescriptive or emotive

4/50

https://www.youtube.com/watch?v=-4Yp3j_jk8Q
https://www.merriam-webster.com/dictionary/descriptive

a Zoo of Executable Specification Languages

Physical processes
• Calculus [Newton and Leibniz]

Temporal logic
• LTL
• CTL*
• Temporal Logic of Actions (TLA+)

Computable functions
• Lambda calculus
• Turing machines

Automata
• NFA
• PDA
• Statecharts

Concurrency
• Petri nets
• CSP – Hoare
• Actor models – Hewitt

HDLs
• VHDL[-AMS]
• [System-]Verilog[-A]

AND

x in
y in
o out

AND

5/50

Terminology

Language monitoring[KHC91] is the process of observing
the execution of a computer program

expressed in a given programming language.

[KHC91] Amir Kishon, Paul Hudak, and Charles Consel. 1991. Monitoring semantics: a formal framework for specifying, implementing, and
reasoning about execution monitors. In Proceedings of the ACM SIGPLAN 1991 conference on Programming language design and
implementation (PLDI '91). Association for Computing Machinery, New York, NY, USA, 338–352. https://doi.org/10.1145/113445.113474

6/50

http://dx.doi.org/10.1145/113445.113474

Terminology: In our context

In the following:
the tools that enable this process will be referred to as:

language monitors, or simply monitors

runtime monitors are a subclass of language monitors

Language monitoring[KHC91] is the process of observing
the behavior of an executable specification

expressed in a given specification language.

7/50

a Zoo of Language Monitors

Executor Monitor

Debugger
• Moldable [1]
• Omniscient [2]
• Multiverse [3]

Profiler
• MetaSpy [4]
• DSProfile [5]

Tracer

Model-checker
• LTSmin [6]

8/50

[1] Chiş et al. ”The Moldable Debugger: A Framework for Developing Domain-Specific Debuggers.” SLE 2014.
[2] Bousse et al. “Omniscient Debugging for Executable DSLs.” JSS 2018.
[3] Torres Lopez et al. "Multiverse debugging: Non-deterministic debugging for non-deterministic programs." ECOOP 2019.
[4] Bergel et al. "Domain-specific profiling." TOOLS 2011.
[5] Sloane et al. "Domain-specific program profiling and its application to attribute grammars and term rewriting." SCP 2014.
[6] Kant et al. ”LTSmin: High-Performance Language-Independent Model Checking.” TACAS 2015.

Languages

Monitors

Platforms

How to bridge the gap between
the specification languages

and the language monitors
running on ever more heterogeneous platforms?

9/50

2. Transformations:
the Shy Semantics

and the Inaccessible Monitors.
• Understanding the problem
• Looking for high-level solutions

10/50

Many Semantics – Many Runtime Monitors

Formal
Semantics

Execution
Runtime

Executable
Specification

Monitor
Runtime 2

Model 2

Monitor
Runtime 1

Model 1

Monitor
Runtime 3

Model 3

Monitor
Runtime 4

Model 4Result 3

• Semantic gaps

• Equivalence problems

11/50

A#1

A#2

A#3

A#4

A#5

A#6

A#7

V. BESNARD, “EMI: Une approche pour unifier l’analyse et l’exécution embarquée à l’aide d’un interpréteur de modèles pilotable”,
Application aux modèles UML des systèmes embarqués, Ph.D. Thesis, Dec. 2020.

Spin [Hol97]

Divine [Bar+17]

SPOT [DP04], LTSmin [Kan+15]

Java PathFinder [Bra+00]

AnimUML [Jouault+20]
EMI [Besnard+21]

P#1 Semantic gap between design model and analysis
model

P#2 Semantic gap between design model and
executable code

P#3 Equivalence problem between the analysis model
and executable code

, IF [Dragomir+22]

12/50

A#1

A#2

A#4

A#5

A#7

A#1 A#2 A#3 A#4 A#5 A#6 A#7

P#1 ✘ ✘

P#2 ✘ ✘ ✘ ✘ ✘

P#3 ✘ ✘ ✘ ✘ ✘ ✘

A#3 A#6

V. BESNARD, “EMI: Une approche pour unifier l’analyse et l’exécution embarquée à l’aide d’un interpréteur de modèles pilotable”,
Application aux modèles UML des systèmes embarqués, Ph.D. Thesis, Dec. 2020.

13/50

One Semantics – Many Language Monitors

14/50

Make it Simple & Modular

Semantics

Executable
Specification

SLI Language
Monitors

Properties
(metrics)

interprets compute

Diagnosis Toolbox:
• Debugger
• Simulator
• Profiler
• Model-checker
• Exec. Monitors

Semantic
Language
Interface

15/50

Make it Simple & Modular

Semantics

Executable
Specification

SLI Language
Monitors

Properties
(metrics)

interprets compute

Diagnosis Toolbox:
• Debugger
• Simulator
• Profiler
• Model-checker
• Exec. Monitors

Semantic
Language
Interface

Missing toolbox ?

Q1: What is the SLI interface?
Q2: Where is the toolbox?

16/50

3. When
the Semantics Decides to Open up
the Monitors are Interested.
• Requirements
• G∀min∃ Semantic Language Interface
• An illustration

17/50

Execution & Monitoring

Subject Language

Ingredients:

18/50

Semantic
Language

Interface (SLI)

Monitoring
BridgeSemantics

Syntax
Definition

Model
providesA

conformsTo

interprets dependsOn

Execution
Controler

Sequencer Emptiness
Checker Interactive

runs

Subject Language

Execution & Monitoring

Requirements:

19/50

Semantic
Language

Interface (SLI)

Monitoring
BridgeSemantics

Syntax
Definition

Model
providesA

conformsTo

interprets dependsOn

Execution
Controler

Sequencer Emptiness
Checker Interactive

[R01] Completeness
[R02] Non-Interference

[R03] Genericity
[R04] Composability
[R05] Unanticipated Monitoring

[R06] Minimize the Gap
[R07] Break the Rules

[R08] Portability
[R09] Ease Semantics Integration
[R10] Ease Monitor Integration

runs

G∀min∃ Semantic Language Interface (SLI)
SLI (C A E V R ⍺) {

semantics: (C A) {
initial: set C
actions: C → set A
execute: A → C → set C

}

evaluate: E → (C → A → C) → V -- questions

reduce: R → C → ⍺ -- reductions

π: (C A V ⍺ T) {…} -- projections
}

Generic Types:
Configuration,
Action,
Expression,
Value,
Reduction Exp.
⍺: Reduced Config.

20/50

execution step

SLI for Lambda Calculus
CEK-style Semantics [ABM’14]:
lookup≜⟨ x, ρ , κ⟩⟶⟨ ρ[x].1, ρ[x].2 , κ⟩
app ≜⟨e₁ e₂, ρ , κ⟩⟶⟨ e₁, ρ ,⟨◯ e₂ ρ ⟩::κ⟩
arg ≜⟨ v, ρ₁, ⟨◯ e ρ₂⟩::κ⟩⟶⟨ e , ρ₂ ,⟨v ◯ ρ₁⟩::κ⟩
body ≜⟨ v, ρ₁, ⟨λx.e ◯ ρ₂⟩::κ⟩⟶⟨ e , ρ₂[x↦⟨v,ρ₁⟩], κ⟩

Domains:
Value ≜ λx.e Closure ≜ ⟨v,ρ⟩
ρ ≜ {variable ↦ closure}// Environment
Frame ≜ ⟨c ◯⟩ | ⟨◯ e ρ⟩

C ≜ ⟨E, ρ, [Frame]⟩ //Configuration
A ≜ ⟨ ⟩⟶⟨ ⟩ //Action = rule

Syntax:
E ≜ x //variable
| E₁ E₂ //application
| λ x. E //abstraction

SLI Semantics Definition
rules: { lookup, app, arg, body }
semantics: (C A) {

initial: set C := {⟨exp, ∅, []⟩}

actions: C → set A
| c => rules.where(r => r.enabledIn c)

execute: A → C → set C
| r c => { r.applyIn c }

} [ABM’14] B. Accattoli, P. Barenbaum, and D. Mazza.
Distilling Abstract Machines. ICFP '14

21/50

Lambda
Expression

λ CEK
Semantics SLI

interprets

Sequencer(sli) {
current = sli.initial.any
while (current != ∅) {

action = sli.actions(current).any
current= sli.execute(action,current).any

}
}

where:
• sli is deterministic <=> ∀ a c, |initial| = |actions c| = |execute a c| = 1

Sequencer

execute

22/50

4. When G∀min∃ experiences
the real world.

23/50

• Some experiences unravel reusable monitoring bridges
• Transfer to commercial products -- OBP2 inside
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• From zero to model-checker in 30 Hours

Semantic
Language
Interface

Projects:
ONEWAY (DGAC)
Ker-SEVECO (R.Bretagne,ERDF)
JoinSafeCyber (AID)
VeriMoB (RAPID)
EASE4SE (RAPID)
DEPARTS (PIA)
GeMoC (ANR)

Safety & Liveness
Temporal Requirements

FiacreTLA+

AEFDEMI-UMLAnimUML

24/50

Matthias
PASQUIER
in progress

Emilien
FOURNIER
2022

Valentin
BESNARD
2020

Luka
LE ROUX
2018

Vincent
LEILDE
2019

Nicolas
SUN
2022

J.C. ROGER B. DROUOT

T. BOLLENGIER

F. GOLRA

OBP2 Research Vehicle

Commercial Products [PragmaDEV] Academic Prototypes [in-house] Reuse [OTS]

2015-2023

L.LE ROUX

http://www.obpcdl.org/bare-metal-uml/
https://animuml.kher.nl/AnimUML.html

Model-checker

AEFD
Semantics SLI

Emptiness
Checker

⨯
SLI

Property
SemanticsSLI

interprets

interprets

verify

PIA DEPARTS

Safety
Specification

PhD Luka
LE ROUX

25/50

AEFD
Specification

PIA DEPARTS

Model-checker

CDL Prop
Specification

Emptiness
Checker

⨯
SLI

CDL
SemanticsSLI

interprets

SLI

Verification
Guide

Guide
SemanticsSLI⨯ interprets

Fiacre
Specification

Fiacre
Semantics SLI

interprets

verify

PIA DEPARTS

PhD Luka
LE ROUX

PastFree[ze]
Checker

Partially Bounded
Context-Aware Verification,
SEFM’19

26/50

PIA DEPARTS

Model-checker

Executable
Specification

Semantics SLI

Temporal
Specification

Emptiness
Checker

⨯
SLI

Property
SemanticsSLI

interprets

interprets

verify

execute

Sequencer

?

27/50

Bare-metal STM32 - ARM A9

Model-checker

UML
Specification

EMI
Semantics SLI

GPSL
Specification

Emptiness
Checker

⨯
SLI

GPSL
SemanticsSLI

interprets

interprets

?

Sequencer

PhD Valentin
BESNARD

Unified LTL Verification and
Embedded Execution of
UML Models, MODELS’18

28/50

Bare-metal STM32 - ARM A9

Model-checker

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
SemanticsSLI

interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics SLI

interprets interprets

?

Sequencer

PhD Valentin
BESNARD

29/50

Modular Scheduling for Both
Verification & Embedded Execution.
to appear.

Unified verification and monitoring of
executable UML specifications.
A transformation-free approach.
SoSyM’21.

Bare-metal STM32 - ARM A9

Model-checker

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
SemanticsSLI

interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics SLI

interprets interprets

?

UML
Environment

EMI
Semantics SLI ||

SLIinterprets

Sequencer

PhD Valentin
BESNARD

30/50

Modular Scheduling for Both
Verification & Embedded Execution.
to appear.

Unified verification and monitoring of
executable UML specifications.
A transformation-free approach.
SoSyM’21.

Bare-metal STM32 - ARM A9

Model-checker

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
SemanticsSLI

interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics SLI

interprets interprets

?

UML
Environment

EMI
Semantics SLI ||

SLIinterprets

Filter

SLI

Filtering
Policy

interprets

Sequencer

PhD Valentin
BESNARD

Modular Scheduling for Both
Verification & Embedded Execution.
to appear.

Unified verification and monitoring of
executable UML specifications.
A transformation-free approach.
SoSyM’21.

31/50

Model-checker

Bare-metal STM32 - ARM A9

PUSM
Specification

Emptiness
Checker

⨯
SLI

PUSM EMI
SemanticsSLI

interprets

Scheduler SLI

Scheduling
Policy

UML
Specification

EMI
Semantics SLI

interprets interprets

?

Sequencer

UML
Environment

EMI
Semantics SLI ||

SLIinterprets
PUSM Monitor
Specification

⨯ SLI

PUSM EMI
Semantics

SLI

interprets

Acceptance
Asserter

Sequencer

Filter

SLI

Filtering
Policy

PhD Valentin
BESNARD

interprets

Unified verification and monitoring of
executable UML specifications.
A transformation-free approach.
SoSyM’21.

Verifying and Monitoring UML Models
with Observer Automata. MODELS’19.

32/50

4. When G∀min∃ experiences
the real world.

33/50

• Some experiences unravel reusable monitoring bridges
• Transfer to commercial products -- OBP2 inside
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• From zero to model-checker in 30 Hours

Model-checker

SLI

Emptiness
Checker

⨯
SLI

GPSL
SemanticsSLI

interprets

RAPID VeriMoB

GPSL
Specification

34/50

Press release

www.pragmadev.com Page 1 / 2

PragmaDev Process, a new tool to
verify business processes.

Paris - France - November 13th, 2019 - PragmaDev launches PragmaDev Process a new product that
aims at verifying business process models described with BPMN (Business Process Model Notation). The
new product includes an editor, an executor, and an explorer. It is the outcome of a 2 years research project
financed by the French Army with use cases from Eurocontrol and Airbus Defence & Space. The editor is
free of charge without any restrictions and the executor offers free execution of small models.

Complex organizations or system operations are based on processes described in graphical models. The
most popular notation is BPMN (Business Process Model Notation). It describes what the different partici-
pants in the organisation do and how they interact with each other. These processes must be thoroughly
discussed before they are applied in a real situation. Any misunderstanding of the process might lead to a
catastrophic situation in operation.

Since 2001 PragmaDev has developed a high level of expertise in executable models. PragmaDev Studio is
a recognized modeling tool to specify and design complex communicating systems. The idea was to transfer
some of the advanced features of Studio in a tool based on BPMN. The work was carried on with real mod-
els coming from military and civilian contexts.

"When we started the project we thought BPMN models were quite straight forward and fairly simple to
understand. As the project advanced it turned out the execution semantic of the models could create some
unexpected flows of execution and most of our use cases were wrong in one way or another. This tool will
definitely help all business process modelers to get rid of any ambiguity. Because there are domains where
there can not be any compromise on the semantic." says Emmanuel Gaudin, PragmaDev Founder & CEO.

Among the main features are:

• Editor
The editor can edit brand new diagrams, and can import or export any BPMN diagram. When
importing, the tool checks the xml conformity to the standard and the static semantic of the dia-
grams. The static semantic checker implements all the rules defined in the standard such as:
• Sequence flow consistency.
• Message flow consistency.
• Gateway and events consistency.
• etc...

• Execution
Based on BPMN standard semantic the modeler can execute the process step by step. The tool
will outline the possible choices at each step of execution. There is no possible human interpreta-
tion leading to misunderstanding.
The execution can generate a trace which can be used as a reference documentation. It can also
be automatically re-executed on the model to verify a new version of the model behaves like an
older one. For that purpose the tool will trigger the same symbols the user did manually step by

Property Sequence Chart

M. Brumbulli et al., ERTS 2020
M. Brumbulli et al., CSD&M 2020

Press release

www.pragmadev.com Page 1 / 2

A new generation of model checker with
PragmaDev Studio V6.0.

Paris - France - June 14th, 2022 - PragmaDev Studio V6.0 introduces a new generation of model checker
and the support of the new SDL broadcast, making it the best modeling tool to specify and design safe com-
municating software.

Following a long collaboration with ENSTA Bretagne research lab, PragmaDev has integrated in its latest
release of PragmaDev Studio, ENSTA Bretagne model checker OBP (Observer Based Prover).

The primary objective of model checking is to explore all possible scenarios in the model. During the explo-
ration it is possible to detect dead locks, unreachable model branches, or to verify properties. This is a major
feature that leads to a safer and more secure design.

The key characteristic of OBP is that it does not rely on a dedicated language. It relies on a third party exec-
utor to execute the model. In PragmaDev Studio V6 OBP is interacting with PragmaDev SDL executor to
execute the transitions. OBP does not actually know anything about the model it is exploring. It is the same
principle with the properties. OBP evaluates complex properties made of atomic properties that are evalu-
ated by the execution engine.

Communicating systems inherently create a lot of possible cases due to the fact that their designs are
based on concurrent state machines. This creates a lot of possible paths of execution. PragmaDev Studio
has built-in ways to reduce the state size during exploration:

• Reduce the possible parameter values of the incoming messages as well as the number of
messages.

• Exclude some internal variables from the global model state.

"The support for broadcast and the integration of this new model checker make PragmaDev Studio the best
modeling tool to specify and design safe communicating systems." says Emmanuel Gaudin, PragmaDev
Founder & CEO.

The main new features are:

• Introduction of a new model checker.

• Support of SDL and SDL-RT broadcast.

• Native 64 bit Windows.

About PragmaDev

PragmaDev is a privately held company based in Paris France that provides two sets of tools: PragmaDev
Process to describe and verify business processes, and PragmaDev Studio to specify and design communi-
cating systems: PragmaDev customers include Airbus, Nokia, Renault, the French Army, Wipro, ST-Micro-
electronics, Korean Telecom, the European Space Agency, Toshiba, and LG Electronics.

35/50

4. When G∀min∃ experiences
the real world.

36/50

• Some experiences unravel reusable monitoring bridges
• Transfer to commercial products -- OBP2 inside
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• From zero to model-checker in 30 Hours

Zynq XC7Z020-CLG484

Artix-7 FPGA

VHDL
Model SLI Menhir

VCore

ARM A9

Zynq XC7Z020-CLG484

Artix-7 FPGA

EMI
Semantics SLI Menhir

VCore

UML
Specification

DVE C
Semantics SLI Menhir

VCore

ARM A9

Zynq XC7Z020-CLG484

Artix-7 FPGA

STM32F4 Discovery

ARM A9 x64

Workstation

EMI
Semantics SLI

UML
Specification

GPSL
Properties

Virtex UltraScale+ XCVU37P FPGA

DVE
Specification

VHDL
Model SLI Dolmen

VCore

DVE2VHDL

DVE
Properties

PhD Emilien
FOURNIER

Région Bretagne
CPER CyberSSI

DSD’20
FPL’21
DATE’22

37/50

PhD Valentin
BESNARD

From Embedded
to Hardware Execution

Virtex FPGA• Swarm of 32 deeply pipelined verification cores
• Distributed control architecture, for large SSI-FPGAs
• 4874x average speedup over software (Divine 3)

874 X
271 X

7545 X
2552 X

5828 X

47 X

11 X

359 X

8172 X
23091 X

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Ba
ke
ry6
pro
p2

Ba
ke
ry6
pro
p3

Ba
ke
ry7
pro
p2

Ba
ke
ry7
pro
p3

Ba
ke
ry8
pro
p3

Ele
vat
or4
pro
p2

Ele
vat
or4
pro
p3

Ipr
oto
col
s5p
rop
4

Szy
ma
nsk
i3p
rop
3

Szy
ma
nsk
i4p
rop
3

Dolmen[19,12] Dolmen[19,19]

Maction

Maction

Maction

Maction

Maction

Maction

Propaction
Propaction
Propaction
Propaction

Frontier

Pred

MixerKnown

distribute serialize distribute serialize

Dolmen: 1st Hardware Swarm Engine
for Both Safety & Liveness Verification

Région Bretagne
CPER CyberSSI

PhD Emilien
FOURNIER

DATE’22

38/50

4. When G∀min∃ experiences
the real world.

39/50

• Some experiences unravel reusable monitoring bridges
• Transfer to commercial products -- OBP2 inside
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• From zero to model-checker in 30 Hours

Multiverse Debugger
Semantics

run2breakpoint

AnimUML
Specification

AnimUML
Semantics SLI step

jump

select

SLI

Temporal
Breakpoint

Reduction

Submitted to
ECMFA’23

Models’22

PhD Matthias
PASQUIER

interprets

Interactive
Controler 40/50

1 2 3
4

7

5 6

9

8

User
uses

Non-trivial Monitor Composition

4. When G∀min∃ experiences
the real world.

• Some experiences unravel reusable monitoring bridges
• Transfer to commercial products -- OBP2 inside
• Exploring hardware execution
• Multiverse debugging made simple and more powerful
• Transfer to future practioners -- From zero to model-checker in 30 Hours

41/50

From Zero To Model-Checker in 30 Hours

• Class at ENSTA Bretagne the last 2 years

42/50

5. Sum Up & Ways Forward
Conclusion
Major Breakthroughs
Perspectives
Track Record

43/50

Languages

Monitors

Platforms

44/50

industrial: BPMN, SDL
reuse: TLA+, Fiacre
academic: UML, AEFD

Model-checker
Multiverse Debugger
Execution Monitor

G∀min∃ = a way to bridge the gap between
the specification languages

and the language monitors
running on ever more heterogeneous platforms?

embedded: Bare-metal
hardware: FPGA

Major Breakthroughs

A sustainable & composable approach for language monitoring

step-based evaluation plays a major role

1st Hardware Swarm Engine for Both Safety and Liveness Verification
pipelined reformulation of the verification architecture

Established a continuum between debugging and model-checking
language-agnostic under-approximations for scalability
temporal breakpoints

45/50

Perspectives

• Short term:
• Unifying scheduling and partial-order reduction
• Language-agnostic timed semantics

• Midterm:
• Towards open and dynamic abstraction-refinement

• Heterogeneous refinement mappings
• Overapproximations with maximal reuse of the base semantics

• Heterogeneous models
• Long term:

• Moldable diagnosis cockpit: language-agnostic portofolio-based diagnosis
• Derive the proof of the soundness of the monitor

• Algebraic algorithm specification
• The isolation of the execution controller in Gamine can be seen as a generalization of recursion schemes from

trees to arbitrary graphs.
• Allow non-determinism during algorithm design = design algorithm families
• Dataflow-focus to reduce over-constraining

46/50

Generalizing the G∀min∃ language monitoring for
specification-driven software engineering.

47/50

Phd students:
• Matthias Pasquier
• Emilien Fournier
• Tithnara Sun
• Valentin Besnard (prix GDR-GPL)
• Vincent Leilde
• Luka Le Roux
• Lamia Allal
• Jean-Philippe Schneider

Postdocs:
• Luka Le Roux
• Valery Monthe
• Bastien Drouout
• Fahad Golra
• Jean-Charles Roger
• Vincent Leilde

Engineers:
• Hiba Hnaini
• Sylvain Guerin
• Fatma Zarka
• Nadia Menad
• Sebastien Tleye
• Ismail Chaida

Papers:
• 1 patent
• 9 journal papers
• 49 conference papers

Software:
• OBP2 nominated Systematic

Paris-Région ’20
• ClockSystem
• Phadeo
• EMI UML
• AnimUML
• 50+ github repos

Main Projects: ONEWAY, Ker-SEVECO,
JoinSafeCyber, VeriMoB, EASE4SE, DEPARTS,
GEMOC, Ardyt, Morpheus, ValMadeo

Contracts: DAVIDSON, ERTOSGENER

Track Record
Be curious, Explore,
Expand our understanding,
Share the insights

www.obpcdl.org

https://github.com/teodorov
http://www.obpcdl.org/

